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Block-Based Analysis of Scientific Data	


“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 

8 processes 4 processes 1 process

Parallel data analysis consists of decomposing a problem into blocks, 
operating on them, and communicating between them.	




Preliminaries	
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Moving from Postprocessing to 
Run-Time Scientific Data 

Analysis in HPC ���
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Analyze!

Postprocessing analysis 
and visualization	


Run-time analysis and  
visualization 	




Parallel Data Analysis	
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Streamlines and pathlines Stream surfaces 

FTLE Information entropy 

Morse-Smale 
complex 

Voronoi 
Tessellation 

•  Big science => big data, big 
machines	


•  Most analysis algorithms are not 
up to speed	


•  Either serial, or 	


•  Overheads kill scalability	

•  Solutions	


•  Process data closer to the 
source	


•  Write scalable analysis 
algorithms	


•  Parallelize in various forms	

	


Question: What is the best abstraction 
to express parallelism?	




Abstractions Matter: Think Blocks, not Tasks	
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•  Block = unit of decomposition	

•  Block size, shape can be configured	


•  From coarse to fine	


•  Regular, adaptive, KD-tree	

•  Block placement is flexible, dynamic	


•  Blocks per task	


•  Tasks per block	


•  Memory / storage hierarchy	

•  Data is first-class citizen	


•  Separate operations per block	


•  Thread safety	


Parallel data analysis consists of decomposing a problem into blocks, operating 
on them, and communicating between them.	




The What and Why of a Block-Based Approach	
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Partition Data Into 
Blocks	
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The block is the basic 
unit of data 
decomposition. Original 
dataset is decomposed 
into generic subsets 
called blocks, and 
associated analysis items 
live in the same blocks. 
Blocks don’t have to be 
“blocky.”  Any 
subdivision of data (eg., a 
set of graph nodes, a 
group of particles, etc.) is 
a block.	


Structured Grid

AMR Grid

Unstructured Mesh

Graph



Create Multiple Decompositions	
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Uses:	

	

1.  Organize input 

(upper right)	


2.  Second 
decomposition 
suited for 
particular analysis 
(lower right)	


3.  Comparing 
multiple unrelated 
data domains (not 
shown)	




Distinguish Between Blocks and Processes	
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All data movement operations are per block; blocks exchange information with 
each other using regular communication patterns. Runtime manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	


8 processes 4 processes 1 process



Handle Time	


10	


	

-Time often goes forward only	

-Usually do not need all time steps at once	


Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that 
can also be decomposed such that time blocking is handled separately. 	


3D Spatial Extent

(Xmin, Ymin, Zmin, Tmin)

(Xmax, Ymax, Zmax, Tmax)

(Xmin, Ymin, Zmin)

(Xmax, Ymax, Zmax)
(Tmin)

(Tmax)

time

t1
t0

t2

spatial block
vertices

temporal
block

time steps

t3
t2

t4

t5
t4

t6

4D Block

4D Neighborhood
(not drawn)

3D Spatial Neighborhood 1D Temporal Neighborhood

4D 3D 1D

1D Temporal Extent



Group Blocks into Neighborhoods	
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-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	


Two examples of 3 out of a total of 25 neighborhoods

block
gid

block
extents

neighbor
gid, pid,
extents

...

block
gid

block
extents

...

...

block
gid

block
extents

...

lid = 0

lid = 1

lid = 
nblocks - 1

gid = global block identification
lid = local block identification
pid = process identification

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents



Communicate Locally and Globally Between Blocks	
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Nearest neighbor	
 Swap-based 
reduction	


Merge-based 
reduction	




Different Neighborhood Communication Patterns	
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Provide point to point and different varieties of collectives within a neighborhood by 
enqueing and subsequently exchanging items (2 steps).	
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How to enqueue items 
for neighbor exchange	


•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	


•  Support for periodic 
boundary conditions 
involves tagging which 
neighbors are periodic 
and calling user-defined 
transform on objects 
being sent to them	




14	


Left: 64 surfaces each seeded with 512 particles are advected in a 504x504x2048 simulation of a 
solar flare. Right: 64 surfaces each with 2K seeds in a 2K x 2K x 2K Nek5000 thermal hydraulics 
simulation. Time excludes I/O.	


Migrate Blocks for Load Balancing (for Stream Surfaces)	


Lu et al., Scalable Computation of Stream Surfaces on Large Scale Vector Fields,  SC14. 

Courtesy Kewei Lu 
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Easily Write OOC and Multithreaded Algorithms	

With Dmitriy Morozov, LBNL 

Left: In- and out-of-core performance of watershed segmentation. Right: In- and out-of core 
performance of Voronoi tessellation..	


Left: Automatic threading of Voronoi tessellation. Right: comparison between manual and 
automatic threading of density estimation.	




One Example in Greater Detail	
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Parallel Tessellation���
���

We developed a prototype library for computing in situ Voronoi and Delaunay 
tessellations from particle data and applied it to cosmology, molecular dynamics, 

and plasma fusion. ���
	


Key Ideas	


•  Mesh tessellations convert sparse point 
data into continuous dense field data.	


•  Meshing output of simulations is data-
intensive and requires supercomputing 
resources	


•  No large-scale data-parallel tessellation 
tools exist.	


•  We developed such a library, tess.	


•  We achieved good parallel 
performance and scalability.	


•  Widespread GIS applicability in addition 
to the datasets we tested.	
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Scalability	
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Strong and weak scaling for up to 
20483 synthetic particles and up to 
128K processes (excluding I/O) 
shows up to 90% strong scaling 
and up to 98% weak scaling.	




Applications in Cosmology	
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Histogram of Cell Density Contrast at t =  11
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Histogram of Cell Density Contrast at t =  21

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
50

0
10

00
15

00
20

00 100 bins
Range [ −0.77 ,  2.4 ]
Bin width  0.033
Skewness  2
Kurtosis  5.5

−0.77 −0.13  0.52  0.84  1.16  1.48  1.80  2.12  2.45

Histogram of Cell Density Contrast at t =  31

Cell Density Contrast ((density − mean) / mean)
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Temporal structure 
dynamics: As time 
progresses, the range 
of cell volume and 
density expands, 
kurtosis and 
skewness increases, 
consistent with the 
governing physics.	


Strong scaling (excluding I/
O time) using CGAL for 
three time steps of HACC 
data of 10243 particles. At 
later time steps, particles 
cluster into extremely 
dense and sparse regions, 
affecting load balance and 
reducing efficiency from 
77% at t=68  to 14% at t = 
499.	




Summary	
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Recap	


Block abstraction for parallelizing data analysis allows one to:	

	


•  Decompose data into blocks	


•  Assign blocks to processing elements	

•  Have several decompositions at once	


•  Overload blocks, migrate blocks between processing elements	


•  Communicate between blocks	


•  Migrate blocks in and out of core	

•  Thread blocks with finer-grained processing elements	


All made possible by choosing blocks as the parallel abstraction	


	


Think Blocks!	
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Further Reading	
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“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962 
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